Step of Proof: l_before_antisymmetry
11,40
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
l
before
antisymmetry
:
1.
T
: Type
2.
l
:
T
List
3.
x
:
T
4.
y
:
T
5. no_repeats(
T
;
l
)
6. [
x
;
y
]
l
7. [
y
;
x
]
l
[
x
;
x
]
[
x
;
y
;
x
]
latex
by
InteriorProof
((((((((((((((((RWO "cons_sublist_cons" 0)
CollapseTHENA ((Auto_aux (first_nat
CollapseTHENA ((Au
1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHENA ((Au1
CollapseTHEN (OrLeft))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat
CollapseTHEN ((Aut
1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (
CollapseTHEN (
RWO "cons_sublist_cons" 0))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
CollapseTHENA ((Au
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHENA ((Au)
CollapseTHEN (OrRight))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat
CollapseTHEN ((Aut
1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (Easy))
latex
C
.
Definitions
,
{
T
}
,
P
&
Q
,
P
Q
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
Lemmas
sublist
wf
,
sublist
weakening
,
cons
sublist
cons
origin